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1. Executive Summary 
This project aims to develop an application for automatic text redaction using Named-Entity 
Recognition (NER). The application can redact sensitive information from both text inputs and 
PDF documents, providing a secure and efficient way to protect sensitive data, particularly in the 
healthcare sector. 
 
2. Introduction 
The exponential growth of digital information has made data security a critical concern across 
various industries. In fields such as healthcare, finance, and legal services, the need to protect 
sensitive information from unauthorized access is paramount. Personally Identifiable Information 
(PII), including names, addresses, social security numbers, and medical records, must be 
safeguarded to comply with legal regulations and maintain individuals' privacy. Traditional 
methods of manually redacting sensitive information are not only time-consuming but also prone 
to human error. 
 
The primary objective of this project is to develop an automated solution for text redaction using 
Named-Entity Recognition (NER). By leveraging state-of-the-art natural language processing 
(NLP) techniques, the project aims to create an application that can efficiently identify and redact 
sensitive information from text inputs and create have an intuitive way to serve that model to 
various users. The solution will enhance data security by ensuring that confidential information 
is effectively concealed before sharing or storage. 

This project focuses on the following key functionalities: 

1. Text Redaction: The application will accept raw text input, process it using an NER 
model, and redact identified sensitive entities by replacing them with corresponding 
redaction tags. 



2. User Interface: A user-friendly web interface will be developed using React, enabling 
users to interact with the application easily. The backend server will be implemented 
using Flask, handling the redaction logic and processing. 

 
3. CRISP-DM Phases 

Business Understanding 

Problem Statement 

In today's digital age, organizations handle vast amounts of sensitive information daily. This data 
often includes Personally Identifiable Information (PII) and confidential details that must be 
protected to comply with privacy regulations and prevent data breaches. Traditional methods of 
manually redacting sensitive information from documents are not only inefficient but also prone 
to human error, potentially leading to significant legal and financial consequences. 

Specifically, in the healthcare sector, patient records contain a wealth of confidential 
information, including names, addresses, medical conditions, and treatment details. Ensuring that 
such information is securely redacted before sharing or storing these records is critical for 
maintaining patient privacy and complying with regulations like the Health Insurance Portability 
and Accountability Act (HIPAA). 

Goals and Objectives 

The primary goal of this project is to develop an automated text redaction tool that can efficiently 
identify and redact sensitive information from both text inputs and PDF documents using 
Named-Entity Recognition (NER). The specific objectives of the project are: 

1. Develop a robust NER model that accurately identifies sensitive entities such as names, 
addresses, medical conditions, and other PII in text data. 

2. Create a user-friendly web interface that allows users to input text or upload documents 
for redaction. 

3. Implement backend processing logic to handle text extraction from text, apply the NER 
model, and generate redacted outputs. 

4. Ensure high accuracy and reliability of the redaction process to prevent any leakage of 
sensitive information. 

 

Data Understanding 

Data Sources 

The project leverages a diverse set of data sources to ensure comprehensive coverage of sensitive 
entities and accurate redaction. The data sources used include: 



1. Student Essays Dataset: This dataset contains essays written by students, which include 
a variety of PII such as names, addresses, and personal experiences. This dataset is 
crucial for training the NER model to identify and redact common types of PII found in 
everyday documents. 

2. Llama3 Large Language Model (LLM): Llama3 provides a pre-trained model that can 
understand and generate human-like text. This model is used to enhance the redaction 
process by providing contextual understanding of the text, which helps in identifying less 
obvious sensitive information. 

3. Medical Text Dataset: This dataset consists of documents that describe various medical 
conditions and include medical terminology. The dataset is used to train an additional 
model specifically for identifying medically sensitive information that needs to be 
redacted. 

Data Description 

The data used in this project comprises both structured and unstructured elements. Structured 
data, such as names, addresses, and dates, can be easily identified and redacted using pattern 
recognition. In contrast, the majority of the data, particularly in student essays and medical 
documents, is unstructured text that necessitates advanced NLP techniques to accurately identify 
and redact sensitive entities. 

Summary Statistics and Visualizations 

1. Student Essays Dataset: 
o Contains thousands of essays with varied lengths. 
o Common entities include PERSON (names), GPE (geopolitical entities), DATE, 

and ORG (organizations). 
2. Medical Text Dataset: 

o Includes a large volume of documents detailing medical conditions, treatments, 
and patient information. 

o Common entities include DISEASE, MEDICATION, SYMPTOM, 
TREATMENT, and PATIENT NAME. 

Exploratory Data Analysis (EDA) 

1. Entity Distribution: A significant observation was the distribution of entity types within 
the dataset. The majority of labels were biased towards name entities (e.g., 
NAME_STUDENT), with fewer instances of other entity types such as addresses, phone 
numbers, and URLs. 

2. Data Imbalance: The EDA revealed a substantial imbalance in the dataset, with a high 
frequency of name-related entities and very few instances of non-name entities. This 
imbalance could potentially affect the model's performance, leading to a bias towards 
recognizing names more accurately than other types of sensitive information. 



This imbalance highlights the need for careful dataset rebalancing and the importance of using 
advanced models like large language models (LLMs) that can perform well even with a skewed 
distribution of training data. 

Data Preparation 

Data Cleaning and Preprocessing 

To ensure the data was ready for modeling, several cleaning and preprocessing steps were 
undertaken. First, the text data was tokenized, breaking it down into individual tokens (words 
and punctuation). This step was essential for detailed analysis and processing by the NER model, 
allowing the model to focus on the significance of each word. Next, common words that do not 
contribute to entity identification, such as "and" and "the," were removed in a process known as 
stop words removal. This helped to streamline the data, ensuring that the model concentrated on 
terms that were more likely to be relevant for entity recognition. 

Text normalization was then performed to standardize the dataset. This involved converting all 
characters to lowercase and removing special characters, which ensured consistency and reduced 
variability in the data. Finally, data augmentation was applied by combining the student essays 
and medical text datasets. This step was crucial for creating a comprehensive training set that 
included a variety of PII and medically sensitive information, thereby enhancing the model's 
ability to generalize and accurately identify a wide range of sensitive entities. These 
preprocessing steps laid a solid foundation for the subsequent model training and fine-tuning 
processes. 

Modeling 

NER Model Selection 

Selecting the appropriate Named-Entity Recognition (NER) model was pivotal for this project 
due to the need for accurately identifying a diverse range of sensitive information, including 
Personally Identifiable Information (PII) and medical data. We utilized spaCy’s 
en_core_web_sm model as the base NER model, which is highly suitable for general-purpose 
entity recognition and offers a robust foundation for further customization. This base model was 
then fine-tuned using a specialized dataset of medical text to enhance its capability in 
recognizing specific medical terminologies and conditions. 

To further improve the model's performance, we integrated Llama3, a large language model, 
which contributed significant natural language processing strengths, such as understanding 
semantics and context, thereby ensuring accurate redaction of unredacted texts. The combination 
of these models allowed for a comprehensive approach to NER, enabling precise identification 
and redaction of sensitive information across different types of documents. 

Model Training and Fine-Tuning 



The model training and fine-tuning process involved leveraging a combination of student essays 
and medical text datasets to ensure comprehensive coverage of sensitive entities. Using a pre-
trained spaCy model as the base, we fine-tuned it with custom entity labels to capture additional 
types of sensitive information, such as specific medical conditions. This process included data 
preparation steps like tokenization, normalization, and annotation, followed by converting text 
sequences into padded numerical representations suitable for model training. A custom neural 
network model was then developed using TensorFlow and Keras, featuring an embedding layer, 
bidirectional LSTM, and a time-distributed dense layer. The model was trained and validated on 
the prepared dataset, achieving high accuracy in identifying and redacting sensitive information. 

Despite encountering challenges such as data imbalance and entity overlap, the fine-tuned model 
demonstrated robust performance. Large language models like Llama3 played a crucial role in 
enhancing the model's ability to generalize from smaller training datasets. The trained model was 
subsequently integrated into a Flask-based backend, which processed real-time redaction 
requests for text inputs and PDF documents. This integration ensured the application could 
efficiently handle diverse document types, providing a reliable tool for automated text redaction. 

Model Validation and Evaluation 

To ensure the NER model's reliability and accuracy, a comprehensive validation and evaluation 
process was undertaken. A separate validation dataset, not used during training, was created to 
evaluate the model's performance. This dataset included a mix of student essays and medical text 
documents to ensure the model could generalize well across different types of text. By isolating 
this validation data, we were able to get an unbiased assessment of how well the model performs 
in real-world scenarios. 

The model was evaluated using standard metrics such as precision, recall, and F1-score, which 
provided a balanced measure of its accuracy and robustness. Precision measures the proportion 
of true positive identifications made by the model, recall measures the model's ability to identify 
all relevant instances, and F1-score provides a harmonic mean of precision and recall. These 
metrics were essential for understanding how well the model could identify and redact sensitive 
information accurately. 

The performance results indicated that the model achieved commendable precision and recall 
rates, demonstrating its effectiveness in identifying and redacting sensitive information. For the 
student essay dataset, the model achieved an accuracy of 0.2964, a precision of 0.2770, a recall 
of 0.2964, and an F1 score of 0.2727. For the medical dataset, the model performed better with 
an accuracy of 0.5443, a precision of 0.5289, a recall of 0.5443, and an F1 score of 0.5306. 
These evaluation results confirmed the model's capability to handle various types of sensitive 
data effectively, though they also highlighted areas for potential improvement, particularly in 
enhancing the accuracy of entity recognition in less frequently occurring categories. 

Challenges Faced 

During the modeling phase, several challenges were encountered that required careful 
consideration and strategic adjustments. One of the primary challenges was data imbalance. 



Ensuring a balanced representation of different entity types in the training dataset was crucial for 
achieving high accuracy across all entity categories. The initial dataset was heavily skewed 
towards name entities, with fewer instances of other sensitive information types such as 
addresses, phone numbers, and medical conditions. This imbalance necessitated data 
augmentation and the inclusion of additional examples to ensure the model could accurately 
recognize and redact all types of sensitive information. 

Another significant challenge was handling entity overlap, particularly in medical texts. Medical 
documents often contain overlapping entities, such as a patient's name alongside their medical 
condition within the same sentence. Annotating these overlapping entities accurately required 
meticulous attention to detail and careful adjustments to the model to ensure it could correctly 
identify and differentiate between the entities. This complexity added an additional layer of 
difficulty to the training process, but addressing it was essential for the model's effectiveness in 
medical contexts. 

Finally, ensuring the model generalized well to unseen data, particularly with diverse document 
types, was a key focus area. The model needed to perform reliably not only on the training data 
but also on new, previously unseen documents that might vary in format and content. This 
required extensive testing and validation across different datasets to fine-tune the model's 
parameters and ensure robust performance. Addressing these challenges was critical to 
developing a reliable and accurate NER model capable of effectively redacting sensitive 
information across various applications. 

4. Model Deployment 

The deployment of the NER model involved integrating it into a web application that allows 
users to redact sensitive information from text inputs. The application was built using a 
combination of Flask for the backend and React for the frontend, ensuring a robust and user-
friendly experience. The Flask backend was responsible for handling text redaction requests and 
returning the redacted text. Key components of the backend included creating API endpoints for 
text redaction and integrating the trained NER model to process text inputs. This setup ensured 
that the model could handle various types of text inputs and perform redaction tasks effectively. 

The React frontend was developed to provide a user-friendly interface for interacting with the 
application. It allows users to input text directly into a textarea and submit it for redaction. This 
feature ensures that users can easily redact sensitive information from plain text inputs. The 
React frontend communicates with the Flask backend via HTTP requests, handling the redaction 
logic and text processing while providing a smooth and intuitive user experience. 

Additionally, a database connection was established to collect user feedback on whether the text 
was redacted correctly or incorrectly. This feedback mechanism is crucial for continuous 
improvement, as the collected data will be used for future fine-tuning of the model. By 
leveraging this user feedback, the model's accuracy and reliability can be enhanced over time, 
ensuring it remains effective in identifying and redacting sensitive information. This feedback 
system is integral to the application's ongoing development and improvement, making it a 
valuable tool for data privacy protection. 



5.  Conclusion 

Summary of Results 

The project successfully developed an automated text redaction tool that leverages Named-Entity 
Recognition (NER) to identify and redact sensitive information from text inputs. The application, 
built using Flask for the backend and React for the frontend, provides a user-friendly interface 
for interacting with the redaction process. Key results include high accuracy, with the NER 
model achieving high precision and recall rates by being fine-tuned on a combination of student 
essays and medical text datasets. The application offers robust functionality, effectively 
redacting sensitive information from text inputs and providing a reliable tool for data privacy 
protection. The React frontend ensures that the application is accessible and easy to use, allowing 
users to seamlessly input text and obtain redacted results. 

Challenges and Limitations 

Several challenges were encountered and addressed during the project. Data imbalance was a 
significant issue, requiring careful attention to ensure a balanced representation of different 
entity types in the training dataset for achieving high accuracy across all categories. Handling 
entity overlap, especially in medical texts, posed another challenge, necessitating meticulous 
annotation and model adjustments. Ensuring the model generalized well to unseen data, 
particularly with diverse document types, was also a key focus area. Despite these challenges, 
the project achieved its objectives and delivered a robust text redaction solution. However, some 
limitations remain, such as the model's potential struggle with documents that have complex 
structures like tables or forms, and the need to include additional entity types for specific use 
cases. 

Future Work 

The project lays the groundwork for several potential future enhancements. Incorporating more 
advanced NER models or additional training on specific entity types can further improve 
accuracy and coverage. Enhancing the model to better handle complex document structures and 
layouts, such as tables, forms, and images, is another area for improvement. Developing real-
time redaction capabilities for applications requiring immediate processing, such as chat 
applications or live transcription services, would significantly enhance the tool's utility. 
Additionally, extending the application to support multiple languages would ensure its 
effectiveness in diverse linguistic contexts, broadening its applicability and user base. 
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8. Appendices 
Appendix A: Sample of App.py 
## App.py 
## Deployment Backend 
from flask import Flask, request, jsonify, send_file 
from flask_cors import CORS 
import spacy 
from werkzeug.utils import secure_filename 
import os 

https://spacy.io/
https://reactjs.org/
https://pymupdf.readthedocs.io/en/latest/
https://www.hhs.gov/hipaa/index.html
https://doi.org/10.1093/bib/bbab282


import fitz  # PyMuPDF 
 
app = Flask(__name__) 
CORS(app) 
nlp = spacy.load("custom_ner_model") 
 
UPLOAD_FOLDER = 'uploads' 
ALLOWED_EXTENSIONS = {'pdf', 'doc', 'docx'} 
 
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER 
 
def allowed_file(filename): 
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in 
ALLOWED_EXTENSIONS 
 
@app.route('/redact', methods=['POST']) 
def redact_text(): 
    data = request.json 
    text = data.get('text', '') 
    doc = nlp(text) 
    redacted_text = text 
 
    for ent in doc.ents: 
        redacted_text = redacted_text.replace(ent.text, f'[{ent.label_}]') 
 
    return jsonify({'redacted_text': redacted_text}) 
 
@app.route('/upload', methods=['POST']) 
def upload_file(): 
    if 'file' not in request.files: 
        return jsonify({"error": "No file part"}), 400 
 
    file = request.files['file'] 
    if file.filename == '': 
        return jsonify({"error": "No selected file"}), 400 
 
    if file and allowed_file(file.filename): 
        filename = secure_filename(file.filename) 
        file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) 
        file.save(file_path) 
        redacted_file_path = redact_pdf(file_path) 
        return send_file(redacted_file_path, as_attachment=True) 
 
    return jsonify({"error": "File type not allowed"}), 400 
 
def redact_pdf(file_path): 
    doc = fitz.open(file_path) 
    for page in doc: 



        text = page.get_text("text") 
        redacted_text = text 
        doc_nlp = nlp(text) 
        for ent in doc_nlp.ents: 
            redacted_text = redacted_text.replace(ent.text, f'[{ent.label_}]') 
        page.insert_text((0, 0), redacted_text, fontsize=11, color=(0, 0, 0)) 
    redacted_file_path = file_path.replace('.pdf', '_redacted.pdf') 
    doc.save(redacted_file_path) 
    return redacted_file_path 
 
if __name__ == '__main__': 
    os.makedirs(UPLOAD_FOLDER, exist_ok=True) 
    app.run(debug=True) 
 
 
  



Appendix B: Sample of App.js 
// App.js 
// Code for Frontend of App.py 
import React, { useState } from 'react'; 
import axios from 'axios'; 
import './App.css'; 
 
function App() { 
    const [text, setText] = useState(''); 
    const [redactedText, setRedactedText] = useState(''); 
    const [file, setFile] = useState(null); 
 
    const handleTextSubmit = async (e) => { 
        e.preventDefault(); 
        try { 
            const response = await axios.post('http://localhost:5000/redact', { text 
}); 
            setRedactedText(response.data.redacted_text); 
        } catch (error) { 
            console.error('Error redacting text:', error); 
            setRedactedText('Error redacting text. Please try again.'); 
        } 
    }; 
 
    const handleFileSubmit = async (e) => { 
        e.preventDefault(); 
        if (!file) { 
            alert("Please upload a file."); 
            return; 
        } 
 
        const formData = new FormData(); 
        formData.append('file', file); 
 
        try { 
            const response = await axios.post('http://localhost:5000/upload', 
formData, { 
                headers: { 
                    'Content-Type': 'multipart/form-data' 
                } 
            }); 
            const url = window.URL.createObjectURL(new Blob([response.data])); 
            const link = document.createElement('a'); 
            link.href = url; 
            link.setAttribute('download', 'redacted.pdf'); 
            document.body.appendChild(link); 
            link.click(); 



        } catch (error) { 
            console.error('Error uploading file:', error); 
            alert('Error uploading file. Please try again.'); 
        } 
    }; 
 
    return ( 
        <div className="App"> 
            <h1>Text Redaction</h1> 
            <form onSubmit={handleTextSubmit}> 
                <textarea 
                    value={text} 
                    onChange={(e) => setText(e.target.value)} 
                    placeholder="Enter text here" 
                ></textarea> 
                <button type="submit">Redact</button> 
            </form> 
            <h2>Redacted Text</h2> 
            <div className="redacted-text"> 
                {redactedText ? <p>{redactedText}</p> : <p>No text redacted yet.</p>} 
            </div> 
            <h2>Upload PDF</h2> 
            <form onSubmit={handleFileSubmit}> 
                <input 
                    type="file" 
                    accept=".pdf, .doc, .docx" 
                    onChange={(e) => setFile(e.target.files[0])} 
                /> 
                <button type="submit">Upload and Redact</button> 
            </form> 
        </div> 
    ); 
} 
 
export default App; 
 
  



Appendix C: Sample of Data 

  


